Nanorod Surface Plasmon Enhancement of Laser-Induced Ultrafast Demagnetization
نویسندگان
چکیده
Ultrafast laser-induced magnetization dynamics in ferromagnetic thin films were measured using a femtosecond Ti:sapphire laser in a pump-probe magneto-optic Kerr effect setup. The effect of plasmon resonance on the transient magnetization was investigated by drop-coating the ferromagnetic films with dimensionally-tuned gold nanorods supporting longitudinal surface plasmon resonance near the central wavelength of the pump laser. With ~4% nanorod areal coverage, we observe a >50% increase in demagnetization signal in nanorod-coated samples at pump fluences on the order of 0.1 mJ/cm(2) due to surface plasmon-mediated localized electric-field enhancement, an effect which becomes more significant at higher laser fluences. We were able to qualitatively reproduce the experimental observations using finite-difference time-domain simulations and mean-field theory. This dramatic enhancement of ultrafast laser-induced demagnetization points to possible applications of nanorod-coated thin films in heat-assisted magnetic recording.
منابع مشابه
Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملUltrafast demagnetization enhancement in CoFeB/MgO/CoFeB magnetic tunneling junction driven by spin tunneling current
The laser-induced ultrafast demagnetization of CoFeB/MgO/CoFeB magnetic tunneling junction is exploited by time-resolved magneto-optical Kerr effect (TRMOKE) for both the parallel state (P state) and the antiparallel state (AP state) of the magnetizations between two magnetic layers. It was observed that the demagnetization time is shorter and the magnitude of demagnetization is larger in the A...
متن کاملLaser-induced ultrafast demagnetization in ferromagnetic metals.
The laser-induced femtosecond demagnetization in ferromagnetic metals is investigated theoretically. Different from the conventional nanosecond one, this ultrafast demagnetization is a cooperative effect of the external laser field and the internal spin-orbit coupling. The spin-orbit coupling smears out the original identities of triplets and singlets while the laser field uses it as an avenue ...
متن کاملOff-resonance surface-enhanced Raman spectroscopy from gold nanorod suspensions as a function of aspect ratio: not what we thought.
Design of nanoparticles for surface-enhanced Raman scattering (SERS) within suspensions is more involved than simply maximizing the local field enhancement. The enhancement at the nanoparticle surface and the extinction of both the incident and scattered light during propagation act in concert to determine the observed signal intensity. Here we explore these critical aspects of signal generatio...
متن کاملUltrafast magnetization dynamics of Gd(0001): Bulk vs. surface
Ultrafast laser-induced demagnetization of Gd(0001) has been investigated by magneto-induced optical second harmonic generation and the magneto-optical Kerr effect which facilitate a comparison of surface and bulk dynamics. We observe pronounced differences in the transient changes of the surface and bulk sensitive magneto-optical signals which we attribute to transfer of optically excited, spi...
متن کامل